Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms
نویسندگان
چکیده
We give precise quantum resource estimates for Shor’s algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUi|〉. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an n-bit prime field can be computed on a quantum computer with at most 9n+ 2dlog2(n)e+ 10 qubits using a quantum circuit of at most 448n log2(n) + 4090n 3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor’s algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor’s factoring algorithm. The results also confirm estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.
منابع مشابه
Optimized quantum implementation of elliptic curve arithmetic over binary fields
Shor’s quantum algorithm for discrete logarithms applied to elliptic curve groups forms the basis of a “quantum attack” of elliptic curve cryptosystems. To implement this algorithm on a quantum computer requires the efficient implementation of the elliptic curve group operation. Such an implementation requires we be able to compute inverses in the underlying field. In [PZ03], Proos and Zalka sh...
متن کاملShor's discrete logarithm quantum algorithm for elliptic curves
We show in some detail how to implement Shor’s efficient quantum algorithm for discrete logarithms for the particular case of elliptic curve groups. It turns out that for this problem a smaller quantum computer can solve problems further beyond current computing than for integer factorisation. A 160 bit elliptic curve cryptographic key could be broken on a quantum computer using around 1000 qub...
متن کاملNew algorithm for the discrete logarithm problem on elliptic curves
A new algorithms for computing discrete logarithms on elliptic curves defined over finite fields is suggested. It is based on a new method to find zeroes of summation polynomials. In binary elliptic curves one is to solve a cubic system of Boolean equations. Under a first fall degree assumption the regularity degree of the system is at most 4. Extensive experimental data which supports the assu...
متن کاملComputing elliptic curve discrete logarithms with the negation map
It is clear that the negation map can be used to speed up the computation of elliptic curve discrete logarithms with the Pollard rho method. However, the random walks defined on elliptic curve points equivalence class {±P} used by Pollard rho will always get trapped in fruitless cycles. We propose an efficient alternative approach to resolve fruitless cycles. Besides the theoretical analysis, w...
متن کاملSpeeding up elliptic curve discrete logarithm computations with point halving
Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017